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Examining Uncertainties in the Linkage Between
Global Climate Change and Potential Human

Health Impacts in the Western USA—
Hexachlorobenzene (HCB) as a Case Study

T. E. McKone*, J. I. Daniels*, and M. Goldman†
*University of California, Lawrence Livermore National Laboratory, Livermore, CA.

†University of California at Davis, Davis, CA.

ABSTRACT
Industrial societies have altered the earth's environment in ways that could have
important, long-term ecological, economic, and health implications.  In this paper
we define, characterize, and evaluate parameter and outcome uncertainties using a
model that links global climate change with predictions of chemical exposure and
human health risk in the western region of the United States of America (USA).  We
illustrate the impact of uncertainty about global climate change on such potential
secondary outcomes using as a case study the public health consequences related to
the behavior environmentally of hexachlorobenzene (HCB), an ubiquitous
multimedia pollutant.  We begin by constructing a matrix that reveals the linkage
between global environmental change and potential regional human-health effects
that might be induced directly and/or indirectly by HCB released into the air and
water.  This matrix is useful for translating critical uncertainties into terms that can
be understood and used by policy makers to formulate strategies against potential
adverse irreversible health and economic consequences.  Specifically, we employ a
combined uncertainty/sensitivity analysis to investigate how the HCB that has been
released is affected by increasing atmospheric temperature and the accompanying
climate alterations that are anticipated and how such uncertainty propagates to
affect the expected magnitude and calculational precision of estimates of associated
potential human exposures and health effects.  The results from this approach
clearly indicate that a temperature increase of up to 5 °C should have no impact on
the public-health consequences associated with HCB released into air and water in
the western region of the USA.
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INTRODUCTION

There is growing concern that human activities, principally those related to
industrialization, are producing sustained global environmental changes that may
lead to severe adverse impacts on a regional scale (Kempton and Craig, 1993).
Although the precise degree of the changes and the exact magnitude of the
consequences globally and regionally remain uncertain, there are implications that
regionally the quality of life could be affected dramatically.  Consequently, with an
absence of complete information, decision makers at a regional level are confronted
with the task of formulating defensible, proactive strategies that will both avert
potential catastrophe and limit the burden of unnecessary costs for their society.
Accordingly, to construct an effective strategy a decision maker must first interpret
the significance of uncertainties (both qualitative and quantitative) in the scientific
predictions that link regional effects with global environmental change and then
balance these predictions against an uncertain regional economic forecast driven
both by the global environment and by human behavior.

In this paper we apply a combined uncertainty/sensitivity analysis to one of
the indirect regional impacts of global climate change—the public-health
consequences related to the behavior environmentally of hexachlorobenzene (HCB),
an ubiquitous multimedia pollutant.  Specifically, we investigate how increasing
atmospheric temperature and the climate alterations expected to accompany this
temperature change will impact both the expected magnitude and the calculational
precision of the estimated potential human exposures and health effects associated
with releases of HCB to air and water.

We use a standard regional fugacity model of a type that is widely used in
Europe, Canada, and the United States of America (USA) to characterize the
environmental distribution and expected human exposure to HCB (van de Meent,
1990; Mackay and Paterson, 1991; and McKone, 1993).  All inputs to this model are
identified in terms of an arithmetic mean value   x( )  and a coefficient of

variation (CV) that reflect uncertainty and variability of the input parameters.  An
uncertainty/sensitivity analysis is used to propagate parameter uncertainty and
variability, and to compute output uncertainty.  Outputs include concentrations of
HCB in air, water, and soil as well as the human exposure and health risk associated
with these levels of environmental contamination.

Based on a “with and without” analysis applied to climate change, we
address model output uncertainty under two conditions.  First, we assume that
temperature and climate fluctuations follow historical patterns.  Second, we assume
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that temperature and climate fluctuations follow historical trends with an uncertain
temperature increase (e.g., up to a specified maximum) added to the existing
fluctuations.  We then examine the extent to which the temperature increase is
expected to change the magnitude of the public health effects associated with the
HCB released to air and water.  We also explore the extent to which the variance in
public health effects predictions are impacted by the uncertainty in temperature
gain.

PROBLEM DESCRIPTION

Most discussion of global environmental change focuses on macroscopic
variables, such as globally averaged surface temperature.  These macroscopic
variables are not often linked to those public health, ecological, or economic effects
that are regional. As has been noted by MacCracken (1988), we do not have a
physical model that we can set up in a laboratory to describe the Earth’s climate.  So,
we are forced to rely on computational models that are theoretical with limited
horizontal resolution.  Accordingly, it is difficult to answer the key question of
exactly where and to what extent warming will occur and what implications it will
have locally.  Yet, it is these secondary and more local effects, which include changes
in rainfall, water levels, food production, air-pollution, etc., that are likely to be the
significant ramifications of climate change and the precursors to any more
deleterious consequences.

The World Health Organization (WHO) Task Group that prepared a report on
the Potential Health Effects of Climatic Change divided potential health effects of
climate change into two categories—direct and indirect effects (WHO, 1990).
Among the direct effects are climate stress and adaptation, thermal factors, effects of
ultra-violet radiation on human beings, and air pollution.  Indirect effects associated
with global climate change include impacts on food production and consumption,
communicable and vector-borne diseases, and patterns of human migration.
Among these sets of direct and indirect effects, we have selected “air pollution” for
our uncertainty/sensitivity analysis.  Table 1 illustrates an accounting system for
linking a global environmental change (temperature increase) to regional
environmental impacts, such as health effects.

To study the linkage just described, we selected for close examination the
behavior of HCB in environmental media in the Western USA under conditions
where we assume that over time global average temperature increases within some
defined range (e.g., up to 5 °C).  Such a change is considered plausible for the
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Table 1.  A matrix describing potential links between global climate change and
regional effects.

Potentially affected regional systems

Premise:

global temperature 

increase

Local response:

Public

health

Water

supply

Food supply Ecosystem

health and

environmenta

l quality

Resources:

energy,

land use,

housing,

materials

Warmer winter Greater air

pollution

Less winter

snowpack

Growth

cycle effects

Effects due to

loss of

snowpack

More soil

erosion in

mountain

areas

Warmer summer Increased

pollution

levels in air

Greater

evapo-

transpira-

tion

Plant stress

translated to

impacts on

food crops

Heat stress on

biota

Greater

energy

demand for

cooling

Summer  precipitation

decreases

Water

pollution

Increased

stresses on

limited water

resources

Winter precipitation

decreases

Water

pollution

Less winter

rainfall

Reduced

crop growth

Stressing of

limited water

resources

Sea-level rise Increased

homeless-

ness

Salt-water

intrusion

Flooding of

agriculture

lands

Loss and/or

modification

of terrestrial

ecosystems

Loss of

coastal

resources
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Western USA (MacCracken, 1988; NAS, 1991; Cess et al., 1993; Lindzen, 1994).
Therefore, up to a 5 °C change will be assigned in order to focus our efforts on the
uncertainties in the connections between global climate changes and potential
regional effects attributable to perturbations in the environmental fate of HCB.

ENVIRONMENTAL FATE OF HCB

Multimedia-compartment models are used for studying pollutant fate in
environmental media (e.g.,  Thibodeaux, 1979; Mackay, 1979 and 1991; Mackay and
Paterson, 1981 and 1982; Cohen and Ryan, 1985; McKone and Layton, 1986;
McKone et al., 1987; Whicker and Kirchner, 1987; and Cohen et al., 1990).  In this
investigation, we use a chemical-potential model that consists of three
compartments for assessing the environmental fate of HCB emissions in a regional
air basin.  Air, surface soil, and surface water constitute the three compartments in
our model.  This mass-transfer model allows us to consider solution
thermodynamics and environmentally driven advection processes—both of which
are temperature dependent.  In this model we are able to account systematically for
gains and losses in each compartment and for the whole system in concert.  Based
on defined inputs of HCB to air and water, the model provides an algorithm for
calculating contaminant concentrations that will appear eventually in air, water, and
soil.  The model structure is illustrated in Figure 1.

Our model uses a fugacity-based approach to describe chemical activity in
environmental media at low concentrations.  Fugacity-based modeling simplifies
the mathematics involved in calculating partitioning.  Fugacity-based models have
been used extensively for modeling the transport and transformation of nonionic,
organic chemicals in complex environmental systems (see Mackay, 1991).

Fugacity has units of pressure [pascal (Pa)] and can be regarded physically as
the chemical potential that is exerted by a chemical in one physical phase or
compartment on another (Mackay, 1979 and 1991; and Mackay and Paterson, 1981
and 1982). For example, when two or more media are in thermodynamic
equilibrium, the escaping tendency (the fugacity) of a chemical is the same in all
phases.  Also, fugacity models can be used to represent a nonequilibrium system
that has achieved steady state by balancing gains and losses even though fugacities
are not equal.
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Wat er

Sediment

Air

Root - z one soil

Figure 1. Illustration of an elementary, three-compartment chemical-potential
model for assessing the environmental fate of hexachlorobenzene (HCB)
emissions in a regional air basin.

At low concentrations, like those typical of environmental interest, fugacity,
ƒ (Pa), is linearly related to concentration C (mol/m3) through the fugacity capacity,
Z (mol/m3-Pa),

C = ƒZ  . (1)

The fugacity capacity, Z , depends on the physical and chemical properties of the
chemical and on various characteristics of phase, such as temperature and density.
The property that fugacities are equal at equilibrium allows for simple
determination of Z values from partition coefficients.  For example, for two phases
in thermodynamic equilibrium (phases 1 and 2),

C1/C2 = (ƒZ1)/(ƒZ2) = Z1/Z2 = K1,2  , (2)

where C1 and C2 are the concentrations in each phase, Z1 and Z2 are the fugacity
capacities of each phase, and K1,2 is a dimensionless partition coefficient, such as
Kow, the octanol-water partition coefficient.  Table 2 provides a list of fugacity

capacities (Z-values) for the phases and compartments used in this analysis of HCB.
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Table 2.  Fugacity capacities (mol/m3-Pa) for pure phases and environmental
compartments.

Compartment

Fugacity-
capacity
symbol Formula

Pure air Zair 1/RT

Air particles Zap 3 × 106

  VPl
° RT

Bulk air Za Zair + fvap × Zap  ,

Pure water Zwater 1/H

Suspended sediment Zwp KDwp× ρswp × Zwater × 
1 m3 water

 1000 L water

Bulk water Zw Zwater + (ρbw/ρsw) × Zwp

Soil particles Zsp KDsp × ρssp × Zwater × 
1 m3 water

 1000 L water

Bulk soil Zs αsZair + βsZwater + (1– φs)Zsp

The fugacity capacity of a “bulk” compartment is calculated from the sum of the
volume-fraction-weighted fugacity capacities of the constituent phases.  Table 3
provides definitions of parameters used to construct the Z values in Table 2.

Transfer-Rate, Loss-Rate, and the Gain-Loss Equations

Mass transfer from one environmental medium to another is described in a
nonequilibrium, steady-state (level III) fugacity model using mass-transfer D values
(Mackay, 1991).  In the Mackay-type models, mass transfer is driven by the fugacity
gradient across two adjacent compartments such that the flow, Fin (mol/h), is given

by

Fin = D1,2 × (ƒ1 – ƒ2)   , (3)

where D1,2 is the fugacity-based transfer-rate constant across the boundary between
medium 1 and medium 2 with units mol/(Pa-h) and ƒ1 and ƒ2 are the fugacities of

medium 1 and medium 2. This “D” parameter can be structured to represent both
diffusive and nondiffusive mass transfer. In using Eq. 3, we assume that the gradient
from ƒ1 to ƒ2 occurs over a rather short distance relative to the depth of
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Table 3. Definition of parameters used to construct fugacity capacities.

Symbol (units) Description

R (Pa-m3/mol-K) universal gas constant, 8.314 Pa-m3/mol-K

T (K) air temperature

  VPl
° (Pa) subcooled liquid vapor pressure used to calculate sorption onto

solids

H (Pa-m3/mol) Henry's law constant, which expresses the ratio of equilibrium
activities of a chemical in air relative to water when the two phases
are well mixed

KDwp (L/kg)a distribution coefficient for suspended sediment, which is the ratio at
equilibrium of chemical concentration attached to particles (mol/kg)
to chemical concentration in the water (mol/L)

ρswp (kg/m3) density of the suspended sediment particles (not the bulk density of
the particles when mixed in solution).

KDsp (L/kg)a distribution coefficient for soil, which is the ratio at equilibrium of
chemical concentration attached to particles (mol/kg) to chemical
concentration in the soil solution (mol/L)

ρssp (kg/m3) density of the actual soil particles (not the bulk density of the
particles when mixed in solution).

fvap volume fraction of particles in air

αs volume fraction of air in the soil compartment

βs volume fraction of water in the compartment

φs total void fraction in soil (αs + βs)

ρbw (kg/m3) suspended-particle load in surface water

ρsw (kg/m3) suspended-sediment particle density in pure phase
  a 

Karickhoff (1981) has shown that the sorption coefficient for soils or sediments, KDi (i =
wp or sp), can be related to the product of the organic-carbon partition coefficient, Koc,
and the fraction of organic carbon, foc , in a specific compartment.  According to Mackay

(1991), the value for Koc can be approximated as 0.4 × K ow.

either medium 1 or 2 and that the two media are well-mixed so that the fugacity (or
chemical potential) within the two media are mostly uniform.

The steady-state equations describing gains and losses in each of the three
compartments are used to solve for the steady-state inventory in each compartment.
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The following equations express losses and gains for each of the three compartments:
air (a), surface soil (s), and surface water (w).

Air (a): Sa + Tsa Ns + Twa Nw  = La Na (4)

Surface soil (s): Tas Na = Ls Ns (5)

Surface water (w): Sw + Taw Na + Tsw Ns = LwNw (6)

In the equations above, an N represents a compartment inventory, L represents total
loss rate from a compartment, and the Tij (i, j = a, s, or w) are transfer rate constants,

with units of day–1, and express the fraction per unit time of the inventory of
compartment i that is transferred to compartment j.  The product of an N term and a
T  term is the rate of change of inventory in mol/d.  The product Li Ni represents all
losses from compartment i, mol/d.  The terms Sa and Sw, in equations 4 and 6 are,

respectively, the rates of contaminant input to the air and water compartments,
mol/d.  Transfer-rate constants include landscape properties, chemical properties,
fugacity capacities.  The loss-rate constants, Li,  are defined in terms of transfer-and

transformation-rate constants.  Table 4 provides a list of the gains and losses by
transport and transformation that are addressed in each environmental
compartment.

In terms of fugacity, the balance in mol/d is expressed as a loss from a
compartment i and transfer to a compartment j in the form

loss = Area × vij × Zik × ƒi  , (7)

where Area (m2) is that surface across which mass exchange occurs, vij is the
advection or diffusion velocity from i to j at the exchange boundary,  Zik is the
fugacity capacity of the moving phase k from i to j, and ƒi represents the fugacity of

compartment i.  Equation 7 can also be written as

loss = Tij Ni  , (8)

in which

Ni = Zi ƒi Vi , (9)

Tij = 
area ×vij

Vi
 
Zik
Zi

 =  
vij
di

 
Zik
Zi

,  and (10)

Vi is the compartment volume, di is the compartment depth or thickness, and Zi is
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Table 4.  Summary of the processes by which contaminants are exchanged and lost
among the three compartments.

Compartment Gains Losses

(1) Air (both gas
phase and
particles in the
troposphere)

diffusion from soil,
diffusion from surface water,
resuspension of deposited

soil particles, and
contaminant sources

diffusion to soil,
diffusion to surface water,
deposition to soil,
deposition to surface water, and
chemical/physical transformation

(2) Surface soil
diffusion from air,
washout from air by rainfall,

and
dry deposition of air particles

diffusion to air,
diffusion to deeper soil,
advection to deeper soil,
soil solution runoff,
erosion (mineral runoff) to surface water,
resuspension of soil particles, and
chemical/physical transformation

(3) Surface water
diffusion from air,
washout by rainfall,
deposition of atmospheric

particles,
soil solution runoff,
erosion (mineral runoff), and
contaminant sources

sediment deposition,
diffusion to air,
diffusion to sediment,
surface-water outflow, and
chemical/physical transformation

the total fugacity capacity of compartment i.  This is the general approach that is
described in the Appendix, which contains the derivation of the transfer-rate
constants.

Relationship Between Molar Inventories and Health Risks

The purpose of this section is to define the computational model used for the
dose estimates and to describe how uncertain and variable parameters are used in
this model.  Hexachlorobenzene is a likely human carcinogen with a carcinogenic
slope factor (potency) for inhalation estimated to be 1.6 kg-d/mg based on studies
involving laboratory animals (USEPA, 1993).  The potential health risk is based on
human contact through inhalation of contaminated air, ingestion of contaminated
surface water, and ingestion of food contaminated by soil. The risk associated with
these exposures is calculated as

Risk = 
 



 

Na

Va
  ×  

20 m3/d
70 kg   + 

Nw
Vw  ×  

2L/d
70 kg  + 

Ns
Vs

 × UDF(soil)  × potency   . (11)
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In this expression, the Ni terms represent compartment inventories (mg), and the Vi

terms represent compartment volumes (m3), where i equals a, s, or w.  The 20 m3/(70
kg-d) term is the assumed human contact by inhalation (for a 70-kg adult), the
2 L/(70 kg-d) term is the assumed human contact by ingestion of water (for a 70-kg
adult), and the UDF(soil) term is the unit dose factor for human contact with HCB in
soil as a result of ingestion of fruits, vegetables, grains, eggs, meat, and milk and is
assigned a value of 0.0017 kg(soil)/[kg(body-weight)-day], which equates to
0.119 kg(soil) per day for a 70-kg adult, based on an analysis by McKone (1994).
Because a goal of this investigation is to assess the relative impact on risk as a result
of changes in chemical distribution following a positive change in temperature, we
do not assess either the precision or variation of the cancer-potency factor and
concentration-to-dose factors that appear in Eq. 11.

UNCERTAINTY AND VARIABILITY

In addition to the exposure and risk-related parameters that are described
above, there are two classes of inputs to the multimedia transport and
transformation model, which is used as a basis for characterizing potential health
effects with and without climate change.  These two classes of inputs are the
physicochemical properties and the landscape properties.  Each of these model
inputs are described here in terms of an expected value (i.e., arithmetic mean,   x )
and a coefficient of variation (CV).  In the paragraphs below, we define the statistical
moments used, the types of parameters needed in each data class, the   x , and the CV
of the inputs, as well as temperature dependencies of the inputs, and correlations
among all inputs.

Statistical Methods

The   x  term is used to represent all inputs that are derived from a number of
measured values—even those that might have geometric distributions.  The value of

  x  is computed by summing the measured observations and dividing this sum by
the total number of observations.  In this case, the CV is computed by dividing the
arithmetic standard deviation (σn) by   x .

For estimated input values,   x  and CV are obtained from an estimation
equation and the residual error of the estimation equation.
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Physicochemical Properties

Physicochemical properties include molecular weight, octanol-water
partition coefficient, melting point, vapor pressure, Henry’s law constant, diffusion
coefficients in air and water, and the organic-carbon partition coefficient (Koc). The

octanol-water partition coefficient is an intermedia transfer factor (ITF) that provides
a measure of the extent of chemical partitioning between water and octanol at
equilibrium and is used as a basis for estimating many other ITF parameters. The
melting point is the temperature at which a compound makes the transition from a
solid to a liquid phase. Vapor pressure is the pressure exerted by a chemical vapor
in equilibrium with its solid and liquid phase.  Water solubility is  the upper limit
on a chemical's dissolved concentration in pure water at a specified temperature.
Henry's law constant is a measure at equilibrium of the ratio of chemical activity in
the gas above a liquid to chemical activity in the liquid.  Diffusion coefficients
describe the movement of a molecule in a liquid or gas medium as a result of
differences in concentration within the medium.  They are used to calculate the
dispersive component of chemical transport.  The higher the diffusion coefficient,
the more likely a chemical is to move in response to concentration gradients.  The
Koc provides a measure of chemical partitioning between organic carbon (in soils,
rocks, and sediments) and water.  The higher the Koc, the more likely a chemical is to

bind to the solid phase of soil or sediment than to stay in the liquid phase.
The distribution or sorption coefficient, KD, is the ratio at equilibrium of

chemical concentration attached to solids and/or particles (mol/kg) and chemical
concentration in the solution, mol/L.  When Koc is multiplied by the fraction

organic carbon in a soil or sediment, we obtain an estimate of the soil/water or
sediment/water partition coefficient.

Chemical transformations, which may occur as a result of biotic or abiotic
processes, can have a profound effect on the persistence of contaminants in the
environment.  Accordingly, such reaction rates (Ri s, where i = a, s, or w) need to be

estimated for air, water, and soil.
Table 5 provides the mean and coefficient of variation for the chemical

properties used in the chemical transport and transformation model.  The ranges of
values, uncertainties, and variabilities were obtained from a report by McKone et al.
(1993).  McKone et al. (1993) report 20 measured values of Kow with a mean and CV

as listed in Table 5, and 12 measured values of water solubility, WS, with a mean
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Table 5. Chemical properties for hexachlorobenzene (HCB).

Description Symbol
Arithmetic
mean   x( )

Coefficient
of variation

(CV)

Molecular weight (g/mol) MW 285 0
Octanol-water partition coefficient Kow 1.20 × 106 2.2
Melting point (K) Tm 2.31 × 102 0
Vapor Pressure in (Pa) VP 3.99 × 10-4 a 1.1
Solubility in mol/m3 WS 1.70 × 10-5 0.12
Henry's law constant (Pa-m3/mol) H 38 b 1.2
Diffusion coefficient in pure air (m2/d) Dair 4.70 × 10–1 0.1
Diffusion coefficient; pure water (m2/d) Dwater 5.80 × 10-5 0.1
Organic carbon partition coefficient Koc Koc 5.00 × 104 2
Partition coefficient in root-zone soil layer KD_s 6.00 × 102 c 1
Partition coeffic. in surface water sediments KD_d 1.00 × 103 c 1
Reaction rate constant in air (1/d) Ra 0.00243 1.2
Reaction rate constant, ground soil (1/d) Rs 0.00052 0.5
Reaction rate constant, surface water (1/d) Rw 0.00052 0.5

 a Value of VP at 25 °C in the application of the model; calculated using Antoine equation.
 b Value of H at 25 °C; calculated as H = VP/S, where VP is temperature dependent.
 c Karickhoff (1981) has shown that the sorption coefficient for soils or sediments, KD, can

be related to the product of the organic-carbon partition coefficient, Koc, and the fraction

of organic carbon, foc, in a specific compartment.  According to Mackay (1991), the value

for Koc can be approximated as 0.4 × K ow.

and CV also listed in Table 5.  McKone et al. (1993) also report an Antoine equation
for vapor pressure, VP, of HCB in the range 20 to 60 °C, from which the value of VP
at any given temperature, T in °C, can be obtained,

VP = 10{14.1 – 5152.1/(273 + T) ± 0.04}     [GSD=2.5]  . (12)

The geometric standard deviation (GSD) in this estimate corresponds to a CV of 1.1.
The value in Table 5 corresponds to the VP at 25 °C. The Henry’s law constant is
calculated as H = VP/WS where VP is temperature dependent.

Also in Table 5, the mean value of the Koc is based on 10 measured values

cited by McKone et al. (1993); the CV is based on our estimate of the reliability with
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which this parameter could be measured for soils in the Western USA.  Distribution
coefficients are based on the product of Koc and the organic carbon fractions in soil

or sediment. Diffusion coefficients of HCB in air and water have listed values in
Table 5 that are based on relatively reliable estimation methods.

Media-specific reaction rate constants for HCB in air, soil, and surface water
were reported in the review of Howard et al. (1991), who estimate that the half life of
HCB in the lower atmosphere is in the range of 3,750 to 37,500 hours (156 to
1,560 days) based on photo-oxidation as a removal process; that the half life of HCB
in soil due to aerobic biodegradation is in the range of 2.7 to 5.7 years; and that the
half life of HCB in surface water due to aerobic biodegradation is in the range of
2.7 to 5.7 years. Values for HCB reaction rates in Table 5 are based on the arithmetic
mean and standard deviation of these ranges.

Landscape Properties

We developed a landscape data set that is representative of California and
implicitly representative of much of the Western USA.  The types of data needed to
construct a landscape data set include (1) meteorological data, such as average
annual wind speed, deposition velocities, air temperature, and depth of the mixing
layer; (2) hydrological data, such as annual rainfall, runoff, soil infiltration, ground-
water recharge, and surface-water depth and sediment loads; and (3) soil properties,
such as bulk density, porosity, water content, erosion rates, and soil depth.  In
Table 6 we summarize the landscape data that is used to represent the California
landscape.  Also listed in Table 6 are the CVs that describe the variability and
uncertainty in these data.  These data were obtained from compilations by the
U.S. National Oceanic and Atmospheric Administration (USNOAA, 1974),
Soil Conservation Service (1975), U.S. Department of Agriculture (USDA, 1978),
Gleick (1987), and van der Leeden et al. (1991).

Distributions of mean daily temperature, mean daily rainfall, and mean wind
speed were constructed from monthly data for three California cities—Los Angeles,
San Francisco, and Sacramento (USNOAA, 1974)—considered to be representative
of climates in the Western USA.  The reported mean and variance of the ratios of
evapotranspiration, runoff, and recharge to rainfall are based on world-wide
variations as compiled for the world water balance by continent provided in the
Water Encyclopedia, (see van der Leeden et al., 1991, p. 59).
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Table 6.  Landscape properties for a typical air/water shed in the western USA.

Description Symbol
Arithmetic
mean   x( )

Coefficient
of variation

(CV)

Contaminated area in m2 Area 4.10 × 1010 0.1

Annual average precipitation (m/d) rain 1.11 × 10–3 1

Land surface runoff (m/d) runoff 2.74 × 10–4 0.26

Atmospheric dust load (kg/m3) fvap × ρssp 6.15 × 10–8 0.1

Deposition velocity of air particles (m/d) vd 5.00 × 102 0.1

Ground-water recharge (m/d) evapotrans 7.10 × 10–4 0.14

Evaporation of water from surface water (m/d) evaporate 4.38 × 10–6 0.1

Thickness of the soil (m) ds 2.00 × 100 0.1

Soil particle density (kg/m3) ρssp 2.60 × 103 0.1

Water content of soil (volume fraction) βs 2.00 × 10–1 0.1

Air content of soil (volume fraction) αs 1.00 × 10–1 0.1

Fraction of land area in surface water farw 8.15 × 10–3 0.1

Average depth of surface waters (m) dw 5.00 × 100 0.1

Suspended sediment in surface water (kg/m3) ρbw 8.00 × 10–1 0.1

Solid material density in sediment (kg/m3) ρswp 2.60 × 103 0.1

Ambient environmental temperature (K) T 2.88 × 102 0.014

Organic carbon fraction in upper soil zone foc,s 1.20 × 10–2 0.1

Organic carbon fraction in suspended

sediments

foc,d 2.00 × 10–2 0.1

Boundary layer thickness in air above soil (m) δas 5.00 × 10–3 0.1

Yearly average wind speed (m/d) vw 3.38 × 105 0.24

Figure 2 shows the pooled cumulative distribution of monthly average
temperature (in the assumed absence of climate change) for these three California
cities.  (Moments of pooled populations are calculated as the fraction weighted
values and not as moments of the sum.)  Figure 3 provides a plot of monthly average
rainfall versus monthly average temperature for these cities and reveals a rather
strong negative correlation (r = – 0.82) of the variation in rainfall and the variation in
temperature.  This negative correlation suggests that, in California, rainfall
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corresponds to cooler temperatures (i.e., that rain is more likely to fall
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Figure 2. Cumulative distribution of monthly average temperatures in California
cities (Temp [°C] = Temp [K] – 273).
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Figure 3. Monthly average rainfall versus monthly average temperature in
California cities (Temp [°C] = Temp [K] – 273).
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Figure 4. Monthly average wind speed versus monthly average rainfall
in California cities.

during the winter months), which is in fact the case.  This negative correlation also
implies that rainfall is likely to decrease, if temperatures increase.  Figure 4 provides
a plot of monthly average wind speed versus monthly average rainfall and reveals a
weak, but significant, negative correlation (r = – 0.38) between rainfall and wind
speed and suggests that higher winds occur during the rainy months.  This
correlation is strongest for San Francisco, and weakest for Los Angeles, with
Sacramento having a value in between. This result also implies that less rainfall
might correspond to less wind, which is significant when we consider that both
wind and rain serve to decrease the inventory of contaminants released to the
atmosphere.  Table 7 provides a correlation matrix between rainfall, temperature,
and wind speed.

Table 7.  Correlation matrix for the distributions of temperature, rainfall, and wind
speed in California cities.

Temperature Rainfall Wind speed

Temperature –– –0.82 0.05

Rainfall –– –0.38

Wind speed ––
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CASE STUDY: EFFECT OF TEMPERATURE VARIATION ON HEALTH RISKS
ASSOCIATED WITH HCB

We selected for assessment in our case study the lipophilic, persistent, and
ubiquitous chlorinated compound hexachlorobenzene (HCB).  HCB is formed as a
waste product in the production of several chlorinated hydrocarbons and is a
contaminant in some pesticides.  HCB is released to air as a fugitive emission from
these hydrocarbon production facilities and is also released to air in flue gases and
fly ash from waste incineration.  HCB is persistent in the environment due to its
chemical stability and resistance to biodegradation (Howard, 1989).  We assess here
the impact of temperature variation and average temperature increase on the
distribution and fate of HCB and the resulting variation and change in the estimated
public health impacts of HCB releases.

Using the regional fugacity model described above with transfer-factor
relationships described in the Appendix of this paper, we simulate the distribution
of HCB in the western region of the USA, which has the landscape properties listed
in Table 6.  The assumed inputs of HCB to this system are 1 mol/day to air and
10 mol/day to surface water.  These conditions result in the expected values of mean
annual concentrations of HCB in air, soil, and water of 36 ng/m3, 15 ng/kg, and
47 ng/L, respectively, and correspond to an expected multimedia human exposure
of 12 ng/kg-d of which 88.3% is attributable to air, 0.2% is attributable to soil, and
11.5% is attributable to water based on the multimedia distribution derived from
Eq. 9 and the expressions in brackets in Eq. 11.  Based on a cancer potency of
1.6 [mg/kg-d]–1 (USEPA, 1993), this corresponds to a  projected lifetime risk for an
individual selected at random from the population of 1.8 × 10–5.

Propagation of Parameter Variance

Although it is not possible to set up an experiment that allows us to predict
all of the impacts of a climate change, we can estimate outcomes using scientifically
defensible models.  The reliability of these models is determined by the precision of
the model inputs and the accuracy with which the model addresses the relevant
physical, chemical, and biological processes.  Uncertainty in model predictions
arise from a number of sources, including specification of the problem; formulation
of the conceptual model; formulation of the computational model; estimation of
parameter values; and calculation, interpretation, and documentation of the results.
Of these, only the inherent variability of parameter values and uncertainties due to
estimation of parameter values can be quantified in a straightforward manner.  The
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analysis here addresses the propagation of parameter variance through a specified
model to consider the reliability of our prediction of health risk and its relation to
the variability of climate parameters.

There are two approaches by which we can assess how model predictions are
impacted by model reliability and parameter variance—uncertainty analysis and
sensitivity analysis.  In order to address sensitivity and uncertainty, one can think of
a model as producing an output Y, such as risk, that is a function of several input
variables, Xi, that operate during time, t,

Y = f(X1,X2,X3, … Xk, t) . (13)

As applied to a mathematical model, uncertainty analysis involves the
determination of the variation or imprecision in the output function based on the
collective variation of the model inputs, whereas sensitivity analysis involves the
determination of the changes in model response as a result of changes in individual
model parameters.

Uncertainty Analysis

Describing uncertainty in the output variable, Y, involves quantification of
the range of Y, its arithmetic mean value, the arithmetic or geometric standard
deviation of Y, and upper and lower quantile values of Y, such as the 5% lower
bound and 95% upper bound.  Convenient tools for presenting such information are
the probability density function (PDF) or the cumulative distribution function
(CDF) for Y.  However, the PDF or CDF of Y can often only be obtained when we
have meaningful estimates of the probability distributions of the input variables Xi.

Sensitivity Analysis

The goal of a sensitivity analysis is to rank the input parameters on the basis of
their contribution to variance in the output.  Sensitivity analyses can be either local
or global.  A local sensitivity analysis is used to examine the effects of small changes
in parameter values at some defined point in the range of outcome values. A global
sensitivity analysis quantifies the effects of variation in parameters over their entire
range of values.  A global sensitivity analysis requires an uncertainty analysis as a
starting point.  The variance in the outcome is compared to the variance of the
inputs.
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Monte Carlo Methods
In a Monte Carlo analysis, each Xi is represented by a PDF that defines both

the range of values for the parameter and the likelihood that the parameter has a
value in any subinterval of that range.  In an unmodified Monte Carlo method,
simple random sampling is used to select each member of the input parameter set.

The moments of the uncertain estimation of risk, both with and without
climate change, were determined using version 3.0 of the computer software
Crystal Ball® (Decisioneering, 1988–1993, 1994), which performs a Monte Carlo
simulation to propagate uncertainty in a spreadsheet model.  Inputs were taken
from the 99.9% confidence interval of all input parameter distributions.  The
outcome moments tallied and used in the analysis of variance include the arithmetic
mean and variance.  These moments are used to calculate the CV.

The number of repetitions required for each simulation set is determined by
requiring consistent values of the first and second moments of the distribution from
one simulation set to another, when a different random seed is used.

In addition to characterizing overall variance in the predictions of risk, the
purpose of this analysis is to rank the relative importance of the model inputs.
When Monte Carlo methods are used to propagate outcome variance, there are
several methods for ranking uncertainty, including correlation coefficients,
regression coefficients, rank correlation, and rank regression (IAEA, 1989).  We made
use of rank correlations to define the relative contribution of parameter variance to
outcome variance.

Results: Distribution of Health Risks For HCB With and Without
Temperature/Climate Change

Our objectives in this study are (1) to examine the extent to which an annual
average temperature increase of up to 5 °C is expected to change both the
magnitude and the variability of the health effects associated with the HCB released
to air and water and (2) to explore the extent to which the variance in health effects
predictions are impacted by the uncertainty in temperature change.

Figure 5 shows the cumulative distribution of the risk to an individual
selected at random from the population living in the landscape (i.e., Western USA)
receiving the postulated releases of HCB to air and water.  From this figure, we see
that without the postulated increase of temperature the expected value of lifetime
risk is 1.9 × 10–5 with CV=1.9, and that with the postulated temperature increase the
expected value of lifetime risk is 1.5 × 10–5 with CV = 2.1. Thus, we observe that with
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Figure 5. Cumulative distributions of the cancer risk to an individual selected at
random from the population living in the landscape receiving the
postulated releases of HCB to air and water with and without a postulated
5 °C temperature increase.

the postulated increase of temperature, the predicted risk is lower than it is without
the increase.  In contrast, the uncertainty and variability about this predicted risk, as
expressed by the CV is greater with the postulated temperature increase.  The
predicted value of cancer risk decreases in a warmer climate, because in a warmer
climate, under conditions of steady-state mass balance, more HCB is in the air than
in other compartments, and HCB decomposes in air and does not persist as long in
air as in other compartments.  Thus, increasing the relative amount of HCB that is
partitioned to air, serves to decrease the ratio of total inventory to source and lowers
the predicted risk.

Understanding why the CV is higher in the warmer climate is not as straight
forward.  Accordingly, in order to better understand how the observed differences
in CV come about, we carried out an analysis of variance in order to determine the
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amount of outcome (cancer risk) variance that is attributable to individual
parameters under the with and without temperature change scenarios.

We used a rank correlation applied to our Monte Carlo analysis results in
order to determine which parameters contribute to the variance in predicted cancer
risk under the with and without temperature increase scenarios.  Rank correlation
methods normalize the sets of input and outcome values according to rank.  A
standard correlation on ranks is used to assess the percent of outcome variance
attributable to particular inputs (IAEA, 1989).  Figures 6 and 7 show the results of
this analysis.  Each figure provides a histogram plot of the amount of variance in
cancer risk attributable to the variance of particular model inputs.  In each case only
the parameters with the ten largest contributions to variance are listed.  The list of
parameters is similar in both the with and without analysis.  However, in the
“without” case, 79% of the variance in risk is attributable to variance in just three
inputs—HCB vapor pressure, VP; annual average temperature, Temp, and annual
average rainfall, rain—and almost all of the remaining variance is attributable to four
other parameters. In contrast, in the “with” case, the amount of variance attributable
to VP, Temp, and rain go down to 76% and contributed variance is spread out more
among the list of inputs.  Because outcome from the “with” uncertainty analysis
depends more on parameters having a larger variance, the estimated risk with a
postulated temperature rise has a CV that increases relative to the “without” case,
even though the estimated magnitude of risk decreases.

SUMMARY AND DISCUSSION

In this paper we apply a combined uncertainty/sensitivity analysis to one of
the indirect regional impacts of global climate change—the public health
consequences related to the behavior environmentally of hexachlorobenzene (HCB),
an ubiquitous multimedia pollutant.  Specifically, we investigate how increasing
atmospheric temperature and the climate alterations expected to accompany this
temperature change will impact both the expected magnitude of and the
calculational precision for estimating the human exposure and health effects
associated with release of hexachlorobenzene (HCB) to air and water.

An uncertainty/sensitivity analysis is used to propagate parameter
uncertainty and variability and compute output uncertainty.  Outputs include
concentrations of HCB in air, water, and soil and the human health risk associated
with these levels of environmental contamination.
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Sensitivity chart for the prediction of risk 
without an increase of average temperature

VP 45.4%

Temp* 17.8%
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Figure 6.  Sensitivity of the health-risk prediction to model inputs for the
calculation of risk in the absence of temperature increase.

Sensitivity chart for the prediction of risk with a 
5 °C increase of average temperature

VP 43.8%

Temp* 17.3%

rain* 15.3%

Rs 4.3%

v_w* 3.8%

delta T* 3.4%

Koc 3.3%

Water-side air-water MTC 2.6%

Soil mass transfer coefficient 2.1%

delta rain* 2.0%
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 * - Correlated assumption

Figure 7. Sensitivity of the health-risk prediction to model inputs for the calculation
of risk under the assumption that temperature increases
up to 5 °C.
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Based on a “with and without” analysis applied to climate change, we address
model output uncertainty under two conditions.  First, we assume that temperature
and climate fluctuations follow historical patterns. Second, we assume that
temperature and climate fluctuations follow historical trends with an uncertain
temperature increase added to the existing fluctuations.  We then examine the extent
to which the temperature increase is expected to change both the magnitude and the
variability of the health effects associated with the HCB released to air and water.
We also explore the extent to which the variance in health effects predictions are
impacted by the uncertainty in temperature gain.

Although these changes are not significant they do reveal an important
impact of temperature change on secondary impacts.  The month-to-month variation
of temperature is small relative to the variance in the projected population risk. The
CV of month-to-month temperature variation without climate change is only 0.014.
The postulated average temperature increase of  2.5 °C is less than 1% of the variance
of the absolute average monthly temperatures among the selected California cities.
Thus, we have in effect almost doubled the temperature variability in the risk model
(from 0.014 to 0.024).  The result is that the expected value of risk goes down 21% and
the variance in this prediction goes up 20%.  The apparent amplification of variance
is attributable to the correlation of other climate parameters with variations in
temperature.  Because we have assumed that existing correlations between monthly-
average rainfall and monthly-average temperature and between monthly-average
wind speed and monthly average rainfall would apply in a world where the
monthly average temperatures increase, we observe a larger impact on exposure to
HCB and health risks than would have been the case had we carried out this risk
assessment under the assumption that only the temperature increases while the
variance in other climate parameters remains unchanged.

CONCLUSIONS

Kempton and Craig (1993) point out that ideally policy advisors should
communicate risks to the public in an accessible language.  In practice, this
language becomes monetary when we base social welfare choices on the value of a
statistical human life, which could range as high as $2 to $9 million (Hall et al., 1992).
This value is then compared to the costs of intervention designed to eliminate,
control, stabilize, or reduce a specific health or safety problem.  Because of the
magnitude of the costs, it is imperative that the uncertainties in the predictions be
linked to the proposed solutions.  Accordingly, in our example we demonstrate that
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by addressing uncertainty, a decision maker can be shown that even though local
temperatures may increase up to 5 ˚C in the western region of the USA, realistically,
there will be no benefit from regulating the introduction into the environment of the
volatile and ubiquitous chemical HCB.  Therefore, unless global environmental
change can be predicted with greater certainty and outcomes determined beyond a
reasonable doubt, policy decisions should be made and defended with the best
possible analytical evidence available, which includes incorporating analyses of
uncertainty into all assessments, especially evaluations performed on a case-by-case
basis.

We conclude that the approach we illustrated here will lead to a defensible
strategy for assessing the effectiveness of policies that address the predicted adverse
effects of global environmental changes on the Western USA.  Furthermore, our
approach is consistent conceptually with the procedures and recommendations of
others for addressing uncertainties associated with predicting the effects of global
environmental change (e.g., MacCracken, 1988 and 1991; Cess et. al., 1993; Lave and
Dowlatabadi, 1993; Lindzen, 1994; and Lane et al, 1994).
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APPENDIX

DERIVATION OF TRANSFER-RATE CONSTANTS

The Air (a) Compartment

The air compartment is represented by a simple box model in which losses
include deposition to soil and surface water; convective losses; and transformation
losses.  In the box model used for air, the inventory, Na in mol, is described by
solving equations 4 to 6 in the text.  La is the sum of all loss-rate constants from the

air compartment,

La = Tas + Taw + Tao + Ra  , (1A)

where La Na is the sum of all losses from the air compartment, mol/d; Tsa Ns, and
Twa Nw are the gains from surface soil and water, mol/d; Tas and Taw  are the rate
constants for deposition losses to soil and water, day–1; Tao is the rate constant for
convective losses, day–1 and Ra is the rate constant for transformation losses, day–1.

According to Benarie (1980), the long-term average pollutant concentration in
a region bordered by a box model with volume Va and pollution source, Sa in

mol/d, is given by

Cair = Na/Va = 
c Sa

Area × vw
    , (2A)

where c is a unitless proportionality constant; Area is the area of the region being
modeled, and vw is the long-term average wind speed in m/d.  This implies that the
inverse of the rate constant, Tao, is the convective residence time and is given by the
expression,  c da/vw, where da is the atmospheric mixing height.  Based on a model

for area sources developed by Turner (1970), the constant c can be estimated as
4.3 √Area/da, where √Area is the cross-sectional length of an assumed square area
containing the source Sa.  Making the appropriate substitutions gives the following

expression for the convective loss-rate constant in the air compartment:

Tao = 
0.23 vw

√Area
  . (3A)
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The rate constant, Tas, accounts for gross diffusion, rain-water washout, and

particle-deposition losses from air to ground-surface soil.

Tas = (1 – farw) × 

(Yas + rain × Zwater+ vd × Zap × 
ρba

ρss
)

(Za × da)    . (4A)

In this expression, farw is the fraction of land area that is covered by surface water;
ρba is the particle loading in the air, kg/m3, and ρss is the particle density, kg/m3.
The air-compartment mixing depth, da, is 700 m.  The net diffusion from air ground-
surface soil is given by Yas(ƒa - ƒs).  Thus, Yas ƒa is the gross diffusion from air to soil
and Yas ƒs is the gross diffusion from ground-surface soil to air. Yas is the fugacity

mass-transfer coefficient across the boundary between air and soil with units
mol/(m2-Pa-d),

Yas = [1/(ZaUa) + 1/(Zs Us)]–1  . (5A)

where, Ua and Us are, respectively, the soil- and air-side mass transfer coefficients
with units of velocity, m/d. Based on the work of Jury et. al. (1983), Ua is estimated
as Dair/(0.005 m), where Dair is the diffusion coefficient of HCB in air (m2/d), and Us

is given by

    

Us =
αs

10/3 Dair
H
RT

+ φs
10/3Dwater





 / φs

2





0.002 m( ) ×
ρb KDsp

1000
+ φs + αs

H
RT











(6A)

where ρb is the bulk density of the soil (kg/m3) and Dwater is the diffusion

coefficient in pure water (m2/d), and other parameters are defined in Table 3 in the
text.

The rate constant, Taw, accounts for gross diffusion, rain-water washout, and

particle deposition losses from air to surface water and has the form

Taw = farw × 

(Yaw + rain × Zwater+ vd × Zap × 
ρba

ρss
)

(Za × da)   . (7A)
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Yaw is the fugacity mass-transfer coefficient across the boundary between air and

water with units mol/(m2-Pa-d),

Yaw = [1/(ZaUa) + 1/(Zw Uw)]–1  . (8A)

where, Ua and Uw are, respectively, the air- and water-side mass transfer coefficients
with units of velocity, m/d. Based on the work of Southworth (1979), Ua is estimated
as Dair/(0.014 m) and Uw is given by Dwater/(0.00024 m).

The Surface Soil (s) Compartment

The surface-soil compartment represents the surface layer of soil in which
losses include diffusion to air, diffusion to root-zone soil, infiltration to deeper soil
layers, runoff to surface water, and transformation processes.  The inventory, Ns, in

mol of contaminant in the ground-soil compartment is described by equation 5 in
the text.  Ls is the sum of all loss-rate constants from the ground-surface-soil

compartment,

Ls = Tsa + Tso + Tsw + Rs  , (9A)

where Ls Ns is the sum of all losses from the soil compartment, mol/d; Tas Na is the
gains from the air compartment, mol/d; Tsa and Tsw are the rate constants for

resuspension losses to air, for gross diffusion losses to air and to deeper soil, for
advection losses due to rain-water infiltration and for runoff losses to surface water,
day-1; and Rs is the rate constant for transformation losses, day–1.  These loss-rate

constants are given by

Tsa = 

Yas  +  vd × ρba × 
Zsp 

ρss
 

 Zs × ds
  , (10A)

Tso = 
recharge × Zwater + Yss

 Zs × ds
  , (11A)

Tsw = 

runoff × Zwater + erosion × 
Zsp 

ρss
Zs × ds

  , and (12A)

recharge = rain × (1 – farw) – evapotrans – runoff   . (13A)



29

Equation 10A reflects the assumption that resuspension of soil particles is, on
average, equal to deposition.

The Surface-Water (w) Compartment

The surface-water compartment represents bodies of water in which losses
include diffusion to air, diffusion to sediment, deposition to sediment, outflow to
other surface-water bodies, and transformation processes.  The inventory, Nw, in

mol of contaminant in the surface-water compartment is described by equation 6 in
the text and Lw is the sum of all loss-rate constants from the ground-surface-soil

compartment,

Lw = Twa + Twd + Two + Rw  , (14A)

where Lw Nw is the sum of all losses from the surface-water compartment, mol/d;
Taw Na is the gain by diffusion and deposition from the air compartment, mol/d;
Tgw Ng is the gain by runoff from the surface-soil compartment, mol/d; Tdw Nd is
the gain by diffusion and deposition from the sediment compartment, mol/d; Twa,
Twd, and Two are rate constants for gross diffusion loss to air, for deposition and
gross diffusion losses to sediments, and for loss due to outflow, day–1; and Rw is the

rate constant for transformation losses, day–1.  The loss-rate constants are given by

Twa = 
Yaw

Zw × dw
  , (15A)

Twd = 
Ywd + deposit × Zdp/ρsd

Zw × dw
  , (16A)

Two = outflow × 
[Zwater + (Zwp × ρbw/ρsd)]

Zw × dw × farw
  , and (17A)

outflow = inflow + runoff + rain × (farw) – evaporate  . (18A)
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Solutions for the Molar Inventories

Equations 4 through 6 in the text and matrix inversion methods are used to
solve for the steady-state inventories, Ni, of contaminant in the three compartments

included in the model.  These solutions give the following relationships,

Nw = 
 



 

Sw

Lw
   +  

Tsw × aø
Lw

   +  
Taw × Sa
Lw × La

   +  
Taw × Sa × aø

Lw × La

 



 

1  –  

Tsw × bø
Lw

  –  
Taw × Tsa × bø

Lw × La
  –  

Taw × Twa
Lw × La

(19A)

Ns = aø + bø × Nw (20A)

Na = 
Sa
La

  +  
Tas
La

 × Ns  +  
Twa
La

 × Nw (30A)

where,

aø =
Tas × Sa
Ls × La

  ×  
 



 



  
 



 



1 – 
Tas × Tsa
Ls × La

–1
(31A)

bø  =
Tas × Twa

Ls × La
  ×  

 



 



  
 



 



1 – 
Tas × Tsa
Ls × La

–1
(32A)
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